UV resonance Raman studies of the NaClO4 dependence of poly-L-lysine conformation and hydrogen exchange kinetics.

نویسندگان

  • Lu Ma
  • Zhenmin Hong
  • Bhavya Sharma
  • Sanford Asher
چکیده

We used 204 nm excitation UV Resonance Raman (UVRR) spectroscopy to examine the effects of NaClO(4) on the conformation of poly-L-lysine (PLL). The presence of NaClO(4) induces the formation of α-helix, π-helix/bulge, and turn conformations. The dependence of the AmIII(3) frequency on the peptide Ψ Ramachandran angle allows us to experimentally determine the conformational population distributions and the energy landscape of PLL along the Ramachandran Ψ angle. We also used UVRR to measure the NaClO(4) concentration dependence of PLL amide hydrogen exchange kinetics. Exchange rates were determined by fitting the D(2)O exchanging PLL UVRR AmII' band time evolution. Hydrogen exchange is slowed at high NaClO(4) concentrations. The PLL AmII' band exchange kinetics at 0.0, 0.2, and 0.35 M NaClO(4) can be fit by single exponentials, but the AmII' band kinetics of PLL at 0.8 M NaClO(4) requires a double exponential fit. The exchange rates for the extended conformations were monitored by measuring the C(α)-H band kinetics. These kinetics are identical to those of the AmII' band until 0.8 M NaClO(4) whereupon the extended conformation exchange becomes clearly faster than that of the α-helix-like conformations. Our results indicate that ClO(4)(-) binds to the PLL backbone to protect it from OH(-) exchange catalysis. In addition, ClO(4)(-) binding also slows the conformational exchange between the extended and α-helix-like conformations, probably by increasing the activation barriers for conformational interchanges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV resonance Raman measurements of poly-L-lysine's conformational energy landscapes: dependence on perchlorate concentration and temperature.

UV resonance Raman spectroscopy has been used to determine the conformational energy landscape of poly-L-lysine (PLL) in the presence of NaClO4 as a function of temperature. At 1 degree C, in the presence of 0.83 M NaClO4, PLL shows an approximately 86% alpha-helix-like content, which contains alpha-helix and pi-bulge/helix conformations. The high alpha-helix-like content of PLL occurs because ...

متن کامل

UV Resonance Raman Determination of Polyproline II, Extended 2.51-Helix, and -Sheet Ψ Angle Energy Landscape in Poly-L-Lysine and Poly-L-Glutamic Acid

UV resonance Raman (UVR) spectroscopy was used to examine the solution conformation of poly-L-lysine (PLL) and poly-L-glutamic acid (PGA) in their non-R-helical states. UVR measurements indicate that PLL (at pH ) 2) and PGA (at pH ) 9) exist mainly in a mixture of polyproline II (PPII) and a novel left-handed 2.51-helical conformation, which is an extended -strand-like conformation with Ψ ≈ +17...

متن کامل

Ultraviolet resonance Raman study of side chain electrostatic control of poly-L-lysine conformation.

We used 204 nm excitation UV resonance Raman (UVRR) spectroscopy to examine the role of side chain electrostatic interactions in determining the conformation of poly-L-lysine (PLL). We examined the pH and ionic strength dependence of the UVRR. The pH dependence of PLL UVRR spectra between pH 7.1 and 11.7 cannot be described by a two-state model but requires at least one additional state. The Am...

متن کامل

Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications

Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...

متن کامل

Dihedral psi angle dependence of the amide III vibration: a uniquely sensitive UV resonance Raman secondary structural probe.

UV resonance Raman studies of peptide and protein secondary structure demonstrate an extraordinary sensitivity of the amide III (Am III) vibration and the C(alpha)H bending vibration to the amide backbone conformation. We demonstrate that this sensitivity results from a Ramachandran dihedral psi angle dependent coupling of the amide N-H motion to (C)C(alpha)H motion, which results in a psi depe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 116 3  شماره 

صفحات  -

تاریخ انتشار 2012